r - Convert normalized variables back to non-normalized values -


i built kmeans cluster first normalized several of variables in r. model provides me cluster centers, in normalized state (like center of income -1.6).

i want convert -1.6 non-normalized value able give practical meaning (like income 42,000).

now can individually convert z-score value, there way several normalized variables r function?

i can start pnorm() percentage- looking more can apply original dataframe before normalized it.

it might easiest calculate means of (raw) data once have cluster assignments. example, using plyr:

# install.packages('plyr') require(plyr) dat <- mtcars[,1:4] dat$cvar <- kmeans(scale(dat), 3)$cluster ddply(dat, c("cvar"), colwise(mean))    cvar      mpg      cyl     disp        hp 1    1 13.41429 8.000000 390.5714 248.42857 2    2 23.97222 4.777778 135.5389  98.05556 3    3 16.78571 8.000000 315.6286 170.00000 

Comments

Popular posts from this blog

python - Subclassed QStyledItemDelegate ignores Stylesheet -

java - HttpClient 3.1 Connection pooling vs HttpClient 4.3.2 -

node.js - StackOverflow API not returning JSON -